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ABSTRACT 

 

 

ASSOCIATION OF FLT3 AND NPM1 MUTATIONS IN ACUTE MYELOID 

LEUKEMIA PATIENTS WITH METABOLOMIC PATTERNS 

DETERMINED BY MASS SPECTROMETRY 

 

 

Gerekci Yeşilyurt, Selin 

Doctor of Philosophy, Biochemistry 

Supervisor : Assoc. Prof. Dr. Can Özen 

Co-Supervisor: Assoc. Prof. Dr. Salih Özçubukçu 

 

 

September 2022, 93 pages 

 

 

Acute Myeloid Leukemia is a hematological cancer with high phenotypic and 

genotypic heterogeneity. Patients diagnosed with AML are categorized into risk 

groups based on cytogenetic and molecular abnormality tests, which determine the 

specific treatment regimes. Since risk status determination takes significant amount 

of time and some emergency patients require immediate treatment, a method to 

provide fast clinical data that will be the basis for initial treatment regime is needed 

in the medical community. Objective of the proposed work is to discover patterns 

associated with FLT3-ITD and NPM1 mutations in Acute Myeloid Leukemia 

patients, which will provide a fast clinical method for the proper first-response 

treatment. The rationale for the hypothesis is based on the previous studies which 

indicate a link between NPM1 and FLT3-ITD mutations with glucose and amino 

acid metabolism. NPM1 and FLT3 mutations were chosen based on their high 

frequency in AML patients and their essential role in risk group determination. 
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Metabolic pattern determination of the mutations was achieved by LC-MS/MS 

measurements of amino acid and acyl carnitine panels that are highly associated 

with amino acid and glucose metabolism. After preprocessing of the raw data, 

univariate (ANOVA) and multivariate analyses (PCA and PLS-DA) were 

performed to define class discrimination between sample groups. The remarkable 

analytes that have significant power in the discrimination were determined by VIP 

analysis. The developed model was validated with K-Fold cross validation method 

and permutation test. The most significant pathways in class discrimination were 

identified with pathway analysis. Visualization was accomplished via 

Metaboanalyst 5.0 software. 

 

Principal Component Analysis (PCA) showed that 79% of the total variance of the 

sample groups was explained by the model. In order to increase class 

discrimination, Partial Least Squares-Discriminant Analysis (PLS-DA) was 

performed. R2Y and Q2 were found as 0.845 and 0.619, respectively. PLS-DA 

model was validated with K-fold analysis and permutation test. In all the validation 

experiments carried out, a low cross-validation error was observed. In VIP 

analysis, the most significant analytes that cause the class discrimination were 

found as C0 carnitine, glutamic acid, aspartic acid, tryptophan, and histidine, 

respectively. In the pathway enrichment analysis performed with these analytes, 

aminoacyl t-RNA biosynthesis, arginine biosynthesis, valine-leucine-isoleucine 

biosynthesis, alanine-aspartate-glutamate metabolism, histidine metabolism and 

arginine-proline metabolism were found as statistically significant pathways 

responsible for the class discrimination. 

 

In conclusion, a preliminary model based on the targeted metabolomics approach 

was developed for the prediction of mutation status of NPM1 and FLT3 proteins in 

AML patients. Proposed model has a high fit value, validity, and strong predictive 

power. The reliability and validity of the model can be further increased by future 

multicenter studies.  
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ÖZ 

 

 

AKUT MİYELOİD LÖSEMİ HASTALARINDA FLT3 VE NPM1 

MUTASYONLARININ KÜTLE SPEKTROMETRESİ İLE BELİRLENEN 

METABOLOMİK DESENLERLE İLİŞKİLENDİRİLMESİ  

 

 

Gerekci Yeşilyurt, Selin 

Doktora, Biyokimya 

Tez Yöneticisi: Doç. Dr. Can Özen 

Ortak Tez Yöneticisi: Doç. Dr. Salih Özçubukçu 

 

 

Eylül 2022, 93 sayfa 

 

 

Akut Miyeloid Lösemi (AML), yüksek fenotipik ve genotipik heterojeniteye sahip 

hematolojik bir kanserdir. AML tanısı konan hastalar, spesifik tedavi rejimlerini 

belirleyen sitogenetik ve moleküler anormallik testlerine göre risk gruplarına 

ayrılır. Risk durumunun belirlenmesi önemli ölçüde zaman aldığından ve bazı acil 

hastaların acil tedaviye ihtiyacı olduğundan, tıp camiasında ilk tedavi rejimine 

temel oluşturacak hızlı klinik verileri sağlayacak bir yönteme ihtiyaç 

duyulmaktadır. Önerilen çalışmanın amacı, uygun ilk yanıt tedavisi için hızlı bir 

klinik yöntem sağlayacak olan Akut Miyeloid Lösemi hastalarında FLT3-ITD ve 

NPM1 mutasyonları ile ilişkili şablonları keşfetmektir. Hipotezin gerekçesi, glukoz 

ve amino asit metabolizması ile NPM1 ve FLT3-ITD mutasyonları arasında bir 

bağlantı olduğunu gösteren önceki çalışmalara dayanmaktadır. NPM1 ve FLT3 

mutasyonları, AML hastalarındaki yüksek sıklıklarına ve risk grubu belirlemedeki 

temel rollerine göre seçilmiştir. 
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Mutasyonların metabolik patern belirlemesi, amino asit ve glukoz metabolizması 

ile yüksek oranda ilişkili olan amino asit ve açilkarnitin panellerinin LC-MS/MS 

ölçümleri ile sağlanmıştır. Ham verilerin ön işlenmesinden sonra, örnek grupları 

arasında sınıf ayrımını tanımlamak için tek değişkenli (ANOVA) ve çok değişkenli 

analizler (PCA ve PLS-DA) yapılmıştır. Ayırt etmede önemli güce sahip olan 

dikkat çekici analitler VIP analizi ile belirlenmiştir. Geliştirilen model, K-Fold 

çapraz doğrulama yöntemi ve permütasyon testi ile doğrulanmıştır. Yol analizi ile 

sınıf ayrımcılığındaki en önemli yollar belirlenmiştir. Görselleştirme 

Metaboanalyst 5.0 yazılımı ile gerçekleştirilmiştir. 

 

Temel Bileşen Analizi (PCA), örneklem gruplarının toplam varyansının %79'unun 

model tarafından açıklandığını göstermiştir. Sınıf ayrımını artırmak için Kısmi En 

Küçük Kareler-Diskriminant Analizi (PLS-DA) yapılmıştır. R2Y ve Q2 sırasıyla 

0.845 ve 0.619 olarak bulunmuştur. PLS-DA modeli, K-kat analizi ve permütasyon 

testi ile doğrulanmıştır. Gerçekleştirilen tüm doğrulama deneylerinde, düşük bir 

çapraz doğrulama hatası gözlenmiştir. VIP analizinde sınıf ayrımına neden olan en 

önemli analitler sırasıyla C0 karnitin, glutamik asit, aspartik asit, triptofan ve 

histidin olarak bulunmuştur. Bu analitler ile yapılan yol zenginleştirme analizinde, 

aminoaçil t-RNA biyosentezi, arjinin biyosentezi, valin-lösin-izolösin biyosentezi, 

alanin-aspartat-glutamat metabolizması, histidin metabolizması ve arjinin-prolin 

metabolizması sınıftan sorumlu istatistiksel olarak anlamlı yolaklar olarak 

bulunmuştur. 

 

Sonuç olarak, AML hastalarında NPM1 ve FLT3 proteinlerinin mutasyon 

durumunun tahmini için hedeflenen metabolomik yaklaşıma dayalı bir ön model 

geliştirilmiştir. Önerilen model, yüksek bir uyum değerine, geçerliliğe ve güçlü bir 

tahmin gücüne sahiptir. Modelin güvenirliği ve geçerliliği gelecekte yapılacak çok 

merkezli çalışmalarla daha da arttırılabilir. 

 

Anahtar Kelimeler: Hematolojik Maligniteler, Akut Miyeloid Lösemi, 

Metabolomiks, Multivaryasyon Analizi, Kütle Spektrometresi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. Acute Myeloid Leukemia 

 

Leukemia is the second most common hematological cancer and thirteenth among 

all cancer types. Acute Myeloid Leukemia (AML) accounts for 30% of all 

leukemia types. Symptoms such as fever, anemia, and bleeding occur in AML 

patients due to overproduction of immature white blood cells (myeloblasts) and a 

deficiency of mature white blood cells such as neutrophils and monocytes (Siegel 

et al., 2021; Worldwide Cancer Data, World Cancer Research Fund, 2022). 

 

Despite the very important advances and developments in the field of both disease-

specific treatment and supportive treatment -infection control-related and 

supportive treatment-related-, the chance of long-term complete response and/or 

cure with treatment cannot exceed 35-40% even in patients under the age of 60, 

which is a relatively better subgroup (Döhner et al., 2015). Unfortunately, in this 

disease, which has a median age of diagnosis of 68 and more than 50% of patients 

are over the age of 65, the long-term chance of complete response and/or cure in 

patients over 60 years of age is only between 5% and 15% (Döhner et al., 2010). In 

fact, it is known that the median survival of patients with AML in the elderly group 

who cannot receive intensive chemotherapy due to side effects is around 5 to 10 

months. 

 

There are plenty of defined cytogenetic abnormalities and mutated genes in AML. 

Although the genetic heterogeneity in AML has been known for almost 30 years, 

its enormous molecular heterogeneity has started to become evident for about 15 

years. The fact that this biological heterogeneity has earned it the title of 

"guidance" both in the field of diagnosis and especially in the field of treatment has 
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been recently accepted. When the international guidelines in the last 10 years are 

examined, the place of molecular screening in prognostic classification and 

ultimately its importance in the treatment decision can be clearly seen (Saultz & 

Garzon, 2016). 

 

According to accomplished studies, molecular abnormalities such as 

Nucleophosmin-1 (NPM1), Fms-like Tyrosine Kinase 3 Internal Tandem 

Duplication (FLT3-ITD), CCAAT Enhancer Protein Alpha (CEBPA), Isocitrate 

dehydrogenase 1/2 (IDH1/2) and KIT (c-Kit Type III Reseptor Tyrosine Kinase) 

are important for risk stratification not only in AMLs with a normal karyotype, but 

also in other AML subgroups. Some of these molecular abnormalities also affect 

the choice of treatment for patients with AML. As a result of the directives 

determined by the NCCN (National Comprehensive Cancer Network) for patients 

diagnosed with AML, a risk classification (Pollyea et al., 2022) is applied based on 

both chromosomal (cytogenetic) and protein (molecular anomaly) findings (Figure 

1.1). This classification of patients has great importance in terms of prognosis and 

treatment. 

 

 

Figure 1. 1. NCCN guidelines for Acute Myeloid Leukemia version 2.2022 

(Pollyea et al., 2022) 
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1.1.1. Mutations & Risk Classification of Patients 

 

According to cancer statistics, approximately 50% of AML cases are in the normal 

category when examined cytogenetically (Meyer & Levine, 2014). AML cases 

with normal cytogenetics are classified in the intermediate risk category in terms of 

recurrence and prognosis (Döhner et al., 2017). However, in terms of clinical 

outcome, there is a substantial heterogeneity within this group (Medinger & 

Passweg, 2017). When all  AML classifications are taken into consideration, it can 

be clearly seen that FLT3-ITD is the only molecular abnormality that determines 

the poor risk in AML cases even with normal cytogenetics and is included in the 

intermediate group and classifies these cases directly to the bad risk group  

(Medinger & Passweg, 2017; Pollyea et al., 2022). In Figure 1.1, the only 

molecular abnormality in AML that determines poor prognosis and classified 

patients as in the poor risk group is FLT3-ITD. In other words, the presence of 

FLT3-ITD in a patient indicates that the patient has a poor prognosis, even if the 

cytogenetic classification is at good risk (Pollyea et al., 2022). 

 

In the same figure, NPM1 which is known as a good risk predictor when seen 

alone, ranks first with a rate of 30-45% (Medinger & Passweg, 2017). Moreover, it 

is emphasized that the mutation in the NPM1 gene is seen in approximately 30% of 

all AML cases and in more than 50% of AML cases with normal cytogenetics 

(Grimwade et al., 2016). The frequencies and characteristics of these mutations and 

the tables are presented below (Figure 1.2).  

 

NPM1 and FLT3 tests are primarily examined when hematopoietic stem cell 

transplantation is required in AML patients. In the guideline for AML 

hematopoietic stem cell transplantation published by the Turkish Ministry of 

Health in 2017 and still in force, the presence of NPM1 and FLT3 mutations 

among the all protein abnormalities in AML ranks first for the patients who 

received first-line treatment but still immediately need stem cell transplantation due 

to their bad prognosis (Turkish Ministry of Health, Transplant Indications in AML, 

n.d.).  
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In the light of this information, it can be understood that AML is a heterogeneous 

malignancy. However, due to their importance in risk classification and stem cell 

transplantation, determination of the status of FLT3 and NPM1 mutations has a 

primary priority in terms of prognosis and treatment. 

 

 

Figure 1. 2. Incidence information of mutations in AML cases (Grimwade et al., 

2016) 

1.1.1.1. Nucleophosmin-1 (NPM1) 

 

NPM1 (B23, No38 or Numatrin) is shuttle phosphoprotein between nuclei and 

cytoplasm and exhibits two-sided function as oncogenic or tumor suppressor. 

Shuttling activity is crucial for normal cell function during cell cycle. It is well 

documented from the studies (Falini et al., 2009; Okuwaki et al., 2002) that NPM1 

takes part in response to stress stimuli, ribosome biogenesis, mRNA processing, 

genomic stability, cell cycle progression etc. The explanation of these various roles 

is that NPM1 has several functional domains which provide interactions with many 

biomolecules such as transcription factors (IRF-1, NFkB), histones (H3, H4), 

proteins (p53, ARF) and enzymes (DNA Polymerase alpha). The interactions 
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between these molecules can explain two-sided activity of NPM1 for oncogenic 

and suppressor functions in the cell (Kelemen, 2022).   

 

NPM1 can contribute to formation of cancer in three well-known mechanisms: 

overexpression, mutation and fusion proteins with NPM1. Chromosomal 

translocation and mutation of the NPM1 frequently occur in hematological 

malignancy. For instance, abnormal formation of the fusion protein NPM-ALK is 

observed in anaplastic large cell lymphoma (Andraos et al., 2021).  

 

On the other hand, a mutation in exon 12 of NPM1 (Type A mutation) is unique to 

AML, resulting in abnormal localization of the protein in the cytoplasm. There is a 

frameshift in the region encoding C-terminus of the protein. This abnormal issue 

results in formation of a nuclear export signal. Within this signal, expression of the 

mutated NPM1c+ protein is increased. NPM1 mutations are a founder genetic 

abnormality in formation and also in disease maintenance. There are approximately 

50 different kinds of NPM1 mutations in AML. All these mutations create 

cytoplasm-dislocated NMP1c+ protein. This protein has importance in AML in 

terms of oncogenicity (Y. Chen & Hu, 2020).   

 

NPM1 mutations are the most frequent genetic abnormalities in AML patients. 

These mutations have a prognostic significance. According to international 

guidelines for AML classifications, in the absence of ITD of FLT3 gene in 

cytogenetically normal AML (CN-AML) cases, these mutations have been 

associated with favorable prognosis (Y. Chen & Hu, 2020). As distinct from other 

myeloid mutations, NPM1 is exceptional for its specificity to a subtype of AML 

which is identified as a specific diagnostic feature by WHO classification of 

myeloid cancers (Verhaak et al., 2005) . 
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Figure 1. 3. Functional domains of NPM1 (Kelemen, 2022) 

The link between increased stem-cell associated genes (HOXA, HOXB, MEIS1, 

etc.) and NPM1c+ leukemia cells have been studied in order to define genetic 

characterization of the mutated cells. Within relocalization of NPM1c+ from 

cytoplasm to the nucleus caused in a downregulation of the HOX/MEIS1.  These 

findings show the importance of therapeutic potential of inducing NPM1 (Y. Chen 

& Hu, 2020).  

 

 

Figure 1. 4. Cellular location of NPM1 protein for healthy and leukemia cell (Y. 

Chen & Hu, 2020) 
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Mutated NPM1 is also important to monitor disease status in AML. The mutation 

disappears with complete remission. However, it reappears at relapse. Based on 

this information, a large cohort of treated AML patients further showed that NPM1 

mutation can be also used for prediction of residual disease(Ivey et al., 2016). If the 

patient's NPM1 mutation status still cannot disappear after the second cycle of 

chemotherapy, it has been associated with a high risk of relapse after 3 years of 

follow-up. NPM1 mutations were found in 95 % of AML relapsed patients. In the 

light of this information about NPM1 mutations, it can be obviously said that 

NPM1 measurement is not only important in determination of risk classification of 

AML patients at the beginning of prognosis, but also important in monitoring 

disease status.  

 

1.1.1.2. FMS-like Tyrosine Kinase 3 (FLT3) 

 

FLT3 is a member of the subfamily Platelet-derived Growth Factor Receptor 

(PDGF-R) of receptor tyrosine kinases (RTK) also known as Stem Cell Kinase-1. 

This transmembrane ligand activated RTK member was first recognized by its 

expression in hematopoietic stem cells (HSCs). With the following studies, its 

importance in normal HSC function is well known now (Levis & Small, 2003).  

 

In order to preserve normal function of HSCs, it is important to regulate 

microenvironment with network of hematopoietic growth factors (IL-3, IL-6, SCF, 

LIF, FLT-3 ligand), signaling pathways (Wnt, Notch), cell cycle regulators 

(p21,p53) and transcription factors (RUNX1, HOX) (Roboz & Guzman, 2009). 

When the network is considered, it is not surprising that FLT3 has an important 

role in AML.  

 

Upon binding of FLT3 ligand (FL) to FLT3, homodimerization and conformational 

changes occur, within formation of autophosphorylation signals promotes cell 

survival, proliferation and differentiation through downstream molecular pathways 

such as PI3K, RAS, STAT5 (Knight et al., 2022). After dimerization and activation 

of the receptor, it is immediately internalized and degraded.  
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FLT3 mutations are found in approximately 30 % of de novo AML patients. All 

FLT3 mutations cause constitutive activation of the receptor, resulting in survival 

and proliferation of AML (Daver et al., 2019).  

 

One of the common mutations in FLT3 is ITD (Internal Tandem Duplications) 

mutations for AML cases. In FLT3-ITD, additional amino acids are inserted into 

the juxtamembrane domain. Hence, the auto-regulatory function of this domain is 

disrupted. Receptor can be dimerized, autophosphorylated and constitutively 

activated in absence of the ligand (Grafone et al., 2012). When constitutively 

activated receptor signal and wild type (WT) activated FLT3 receptor signal are 

compared, downstream pathway activations differ. FLT3-ITD causes repression of 

two transcription factors, important for myeloid maturation (PU.1 and C/EBP) 

(Gruszka et al., 2019; Knight et al., 2022). Another difference is that higher mRNA 

levels of Fizzled-4 receptor in Wnt pathway were found in FLT3-ITD cells 

compared with FLT3-WT (Gruszka et al., 2019). In addition, high β-Catenin levels 

are found in FLT3-ITD mutations. In the light of this information, there is a 

synergy between FLT3-ITD mutation and Wnt pathway in AML (Gruszka et al., 

2019).  

 

 

Figure 1. 5. Inactive and active form of wild type FLT-3 (Knight et al., 2022) 
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The relation between constitutively activated Wnt signaling and cancer cell 

metabolism were studied. According to these studies, Wnt network is a regulator of 

cancer cell metabolism (Lee et al., 2012; Pate et al., 2014; Sherwood et al., 2014). 

The results show that there is a crosstalk between Wnt and c-MYC -downstream 

protein of Wnt- pathways in cancer cells. It means that β-catenin-mediated c-Myc 

expression causes high expression of rate-limiting glycolytic genes via Lactate 

Dehydrogenase (LDH), glucose transporter 1 (GLUT-1), and the M2 isoform of 

pyruvate kinase in order to boost aerobic glycolysis in cancer (Sherwood, 2015). 

Consequently, FLT3-ITD mutation affects downstream signaling pathways 

resulting in significant changes in cancer cell metabolism.  

 

Figure 1. 6. Wnt signaling affects cancer cell metabolism via downstream pathways 

(Sherwood, 2015) 

Based on these significant effects on cancer cell metabolism, proliferation and 

survival, FLT3-ITD mutation is associated with poor prognosis in AML cases and 

has a negative impact on the management of patients (Daver et al., 2019).  
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1.1.2. Clinician’s Perspective on AML Patients 

 

AML is a hematological malignancy that develops and progresses rapidly in a few 

weeks. Management of AML includes standard therapy (according to international 

guidelines e.g., NCCN), palliative care and clinical trials. According to established 

prognostic algorithms of NCCN, all data belonging to new drugs are evaluated and 

compared with the results of the previous year. Then, new treatment options are 

offered to clinicians (Estey, 2020). As seen in Figure 1.7, treatment strategies and 

options are clearly given according to risk evaluations.  

 

 

Figure 1. 7. NCCN Guideline to define risk stratification of AML cases (NCCN 

Clinical Practice Guidelines in Oncology (NCCN Guidelines®), Acute Myeloid 

Leukemia Version 2.2022, 2022) 

In the first sight of a newly diagnosed AML patient, clinicians must take into 

consideration whether to suggest standard therapy, clinical trial and allogeneic 

transplantation after induction therapy. The path to be chosen by the clinician 

should be determined as a result of the risk/benefit analysis of all treatment options. 
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It should not be forgotten that current therapies were clinical trials even 1-2 years 

ago.  

 

AML is a rapidly progressing cancer type that requires urgent treatment. Obtaining 

testing results of the cytogenetic & mutations panel takes approximately 14-21 

days. In case of suspicious results, the sample is measured again.  In some cases, it 

is impossible to wait for genetic testing results. According to Röllig et al., the risk 

in awaiting testing results is less than the risk in beginning therapy before results 

are available (Röllig et al., 2019).  

 

As mentioned above, according to NCCN classification, NPM1, FLT3-ITD, 

CEBPA, IDH1/2, DNMT3A, KIT and other mutations are important for prediction 

of all AML subsets (NCCN Clinical Practice Guidelines in Oncology (NCCN 

Guidelines®), Acute Myeloid Leukemia Version 2.2022, 2022). However, in 

Turkey, all these mutations are not checked as a routine test in the AML panel of 

hematology centers. Besides that, measurement of the mutation panel is only 

performed in major hospitals. Even though a number of university hospitals in 

major cities are capable to define molecular abnormality tests via Next Generation 

Sequencing (NGS), obtaining results can prolong up to 4-8 weeks (Erciyes 

University, Laboratory Test Guideline, 2017; Medipol AML-NPM1 Sequence 

Analysis, n.d.). 

 

Although there are plenty of mutations that affect the risk stratification in AML, 

the parameters which are preferentially measured at Ankara University 

Hematology Department -due to their incidence and strategic importance- are given 

below in Figure 1.8 (Grimwade et al., 2016). 
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Figure 1. 8. The parameters of AML panel which are preferentially measured in 

Ankara University Hematology Department 

In the light of these information, until obtaining whole mutation panel results of de 

novo AML patient, rapid diagnosis techniques are needed, primarily for FLT3 and 

NPM1 and later for other critical mutations in order to guide the clinician quickly 

(Röllig et al., 2019).  

 

1.2. Metabolomics 

 

Omic technologies refer to universal detection of characteristics of cellular 

molecules in a specific biological sample. For instance, genomics is the first step of 

omics cascade. Genomics discovers structure, function, mapping of genomes and 

characterizes features and their relation with production of related proteins. On the 

other hand, metabolomics is the last step of omics cascade and identifies/quantifies 

cellular metabolites (<1500 Da) using high throughput analytical techniques such 

as Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography 

Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR) with 

sophisticated statistical methods (multivariate analysis) in order to obtain 

significant information from huge data stack. Since it is the last step of the cascade, 

information which is obtained from metabolomics studies is closer to predict 

phenotype than other omic areas.  
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Figure 1. 9. Omics cascade (Anton Pervukhin, 2009) 

Pathological disorders, organ dysfunctions or tumors can affect chemical and 

protein content of biological samples such as blood, plasma and serum. Since most 

of today’s clinical tests (e.g., lactate, phenylalanine, Free T3) are based on the 

analysis of biological samples, metabolomics studies have crucial clinical 

importance for new diagnostic tests in future (Psychogios et al., 2011).  

 

Serum Metabolome Database (SMDB) and Human Metabolome Database 

(HMDB) are examples for free sources in order to obtain information about 

metabolite names, level of verification, concentration ranges and related diseases 

(Psychogios et al., 2011).   

 

1.2.1. Cancer Metabolomics 

 

In 1927, Warburg et al., published a milestone study about a distinct feature of 

cancer cell metabolism.  In this study, which will be referred to as the Warburg 

effect in the following years, it was shown that cancer cells consume 200X more 

glucose than healthy cells (Warburg et al., 1927). On average, glycolysis is 10-100 

times faster than oxidative phosphorylation (Liberti & Locasale, 2016) in cancer 
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cells. Since cancer cells need a rapid energy source for biosynthetic pathways in 

order to proliferate and survive, glycolysis is a reasonable choice.  

However, interest in this distinct metabolic phenotype significantly decreased in 

the 1960s. The fact of “cancer is a metabolic disease” has been faced again in the 

last 15 years. Due to the increased technology of instrumental techniques changed 

the way of thinking about cancer studies. With these innovations, cancer biology 

was re-focused on the importance of signaling pathways and transcription factors in 

order to understand control of tumor growth and proliferation rate. However, in the 

last few years, the question that “how disrupted metabolism can contribute to 

cancer pathogenesis” has been investigated. This question was arisen because of 

the understanding of disrupted pathways and changes at gene level affect metabolic 

pathways (Dang & Semenza, 1999; Hsu & Sabatini, 2008). With increasing 

metabolomics studies, the term “oncometabolite” has been used in the area to 

define small molecules of metabolism that are closely interacted with tumor 

microenvironment.  

 

Oncometabolites are endogenous molecules that specifically related with tumor 

growth and metastasis. 2-hydroxyglutarate (2HG) was the first oncometabolite 

found in high concentration in glioma and AML (Ward et al., 2010).  After the 

discovery of 2HG, many other oncometabolites were discovered such as fumarate 

(renal cell carcinoma)(Panarsky et al., 2020), sarcosine (prostate cancer) 

(Sreekumar et al., 2009) and succinate (paraganglioma) (Imperiale et al., 2013) .  

 

During the production of oncometabolites, equilibrium of metabolism and redox is 

taken into consideration. For instance, succinate dehydrogenase/fumarate hydratase 

depleted cancers cause the loss of key enzymes for Krebs cycle and related 

metabolites resulting in increased Warburg-like metabolism (Yong et al., 2020).  

 

The common point of all these discovered oncometabolites is that they are required 

for cancer-related metabolic pathways or are produced as a result of these 

pathways. In addition to being the final products of complex oncogenic pathways, 
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oncometabolites can influence pathways through feedback signals (Yang et al., 

2013).  

 

 

Figure 1. 10. Production of oncometabolites and related reactions (di Gregorio et 

al., 2021) 

Metabolomics also enables pattern recognition with rapid, accurate and precise 

analytical techniques such as LC-MS, GC-MS and NMR. These techniques are 

capable of detecting hundreds of biomolecules in a short time at the same run. 

Through this capability, metabolomics is a useful approach in order to discover 

patterns even for cancer subtypes (Díaz et al., 2021; Erlic et al., 2021; Inoue et al., 

2015; Michálková et al., 2018; Weckwerth & Morgenthal, 2005; P.-C. Zhou et al., 

2020).  

 

Besides the discovery of oncometabolites as a biomarker and cancer related 

patterns, metabolomics can be beneficial for imaging metabolic biomarkers. As we 

know, X-ray, positron-emission tomography (PET), magnetic resonance imaging 

(MRI), magnetic resonance spectroscopy imaging (MRSI), and ultrasound 
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are useful imaging techniques to diagnose cancer (Brindle, 2008). PET uses a 

radiolabeled glucose - 2-[18F] fluoro-2-deoxy-D-glucose (FDG)- based on the 

Warburg effect (Friess et al., 1995). Another example of metabolomics studies in 

imaging techniques is MRSI detection of choline in breast tumors. With this 

imaging technique, unnecessary breast biopsies are reduced (Bartella & Huang, 

2007).  

 

The last but perhaps the most important application of metabolomics in cancer is 

targeted drug therapy. The first drugs for the treatment of cancer are based on use 

of similar structures of metabolites that can interfere with their related pathway. 

For instance, Cytarabine is an anti-metabolite in AML treatment that targets late-

stage DNA synthesis. 2-deoxyglucose interferes with glucose and targets the 

glycolysis enzyme, hexokinase (HK) (Beger, 2013). Different examples are given 

in Table 1.1.  

 

Table 1. 1. Examples for antimetabolite drugs.  

Metabolic 

Pathway 

Target Drug Stage of 

Development 

Nucleic acid 

synthesis 

Dihydrofolate 

reductase (DHFR) 

Methotrexate Approved 

Nucleic acid 

synthesis 

5-Phosphoribosyl-

1-pyro-phosphate 

(PRPP) 

Mercaptourine, 

thioguanine 

Approved 

Glycolysis GLUT1 WZB117 (Liu et al., 

2012), BAY-876 

(Siebeneicher et al., 

2016) 

Preclinical  

Glycolysis Hexokinase 2- 

Deoxyglucose(Zhong 

et al., 2008) 

Phase 1/2 

Amino acid 

transport and 

biosynthesis 

Circulating 

asparagine 

L-asparaginase (FDA 

Approves 

Asparaginase Erwinia 

Chrysanthemi 

(Recombinant) for 

Leukemia and 

Lymphoma, 2021) 

Approved 
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1.2.2. Strategies for Metabolomics 

 

Within the increased technology level of analytical techniques, there are 2 main 

strategies in metabolomics called as untargeted and targeted metabolomics (Figure 

1.11).   

 

 

Figure 1. 11. Flow chart of metabolomic approaches 

Untargeted metabolomics is based on screening of biological samples in order to 

obtain fingerprints of the patient.  Plenty of metabolites can be measured in the 

same run. Defined/non-defined metabolites can be monitored from the same run. 

Hence, it can be anticipated that regarding the disease status some metabolites will 

change and reflect characteristics of the patient group. Besides that, in untargeted 

metabolomics, there is no need to suggest a hypothesis. Hypothesis can be shaped 

according to preliminary results. Therefore, new potential biomarkers can be 

identified with this strategy (Benito et al., 2018; Gika et al., 2019; Ward et al., 

2010). If high throughput analytical techniques are also added to the same sample, 

full information about sample metabolome can be obtained (Barber et al., 2019).  
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Figure 1. 12. Targeted vs. Untargeted Metabolomics (Barber et al., 2019) 

 

Figure 1. 13. Workflows of targeted/untargeted metabolomics (Patti et al., 2012) 

Metabolome profiling is quite a complex process. First of all, some metabolites 

may be spatial or have circadian fluctuations. Secondly, diet dependent variability 

should be taken into consideration. Last of all, current analytical techniques may be 

not sensitive enough for trace level components. Thus, the technology level of the 

current instruments is the restrictive step for metabolomics (Dettmer et al., 2007).  

 

On the other hand, targeted metabolomics is based on quantification of preselected 

sets of metabolites (Jasbi et al., 2019; Plewa et al., 2019; Wang et al., 2021). 
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Preselected metabolites can be chosen according to knowledge obtained from 

literature. The novelty -compared with classical biochemistry- is based on 

measurement of many metabolites at the same run with high sensitivity (Barber et 

al., 2019).  

 

As seen in Table 1.2, both methods have unique disadvantages/advantages.  

 

Table 1. 2. Comparison between targeted and untargeted metabolomics 

Features Untargeted Targeted 

Metabolite coverage Excellent Poor 

Hypothesis Need No Yes 

Linear Range Poor Good 

Repeatability Poor Good 

Sensitivity Poor Good 

Need for reference standard No Yes 

Data analysis Hard Easy 

High resolution instrument need Yes Depends on metabolite 

concentration in sample 

New biomarker discovery Yes No 

 

1.2.3. Platforms for Metabolomics Studies 

 

Metabolome is defined as the complete metabolite profile (<1500 Da) of specified 

biological samples. Biological matrices are generally complex matrices. This 

complexity is caused by a great number of metabolites with a broad range of 

physicochemical properties. The following techniques are mostly used in 

metabolomics: NMR, MS (LC-MS, UHPLC-MS, Capillary Electrophoresis (CE-

MS), GC-MS) and Fourier Transform Infrared (FTIR) spectroscopy. Each 

analytical technique has its own advantages and disadvantages (Figure 1.11). For 

instance, volatile metabolites are important for our hypothesis, LC-MS is not 

suitable for our purpose. Due to these reasons, it is difficult to develop a sample 



20 

preparation and analysis method that covers all metabolites (Segers et al., 2019). In 

order to provide metabolite coverage, combined techniques (e.g., LC-MS and GC-

MS) can be used for the same sample.  

    

 

Figure 1. 14. Advantages/Disadvantages of analytical techniques in metabolomics 

(Segers et al., 2019) 

1.2.3.1. LC-MS Based Metabolomics 

 

Since its advantages of speed, sensitivity, dynamic range over other analytical 

techniques in medical research, the most common technique used in metabolomics 

is MS. Depending on types of basic units (e.g., ionization source, mass analyzer 

and ion detector), there are plenty of combinations for MS systems (Figure 1.15 

and Table 1.3).  

 

 

Figure 1. 15. Basic units of Mass Spectrometry 
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MS-based metabolomics provides quantitative results with high sensitivity, high 

reproducibility and saves time. Additionally, in case of combined with a separation 

technique, complexity of mass bulk is reduced. Through this reduction, additional 

information can be obtained from results. For instance, according to retention 

times, metabolites can be compared with each other regarding their 

physicochemical properties.  

 

Table 1. 3. Subunits of mass spectrometry  

Sample introduction Ionization Source Analyzer Type Detector 

Direct Infusion 

Direct Ionization 

Electrospray 

Ionization 

Quadrupole  Electron 

Multiplier 

Gas chromatography Chemical 

Ionization 

Ion trap  Faraday Cup 

Liquid 

chromatography 

Soft Laser 

Desorption 

(MALDI, SELDI, 

DIOS) 

Time of Flight 

(TOF) 

Array 

Detector 

Capillary 

Electrophoresis 

Inductively 

Coupled Plasma 

(ICP) 

Tandem/Hybrid: 

Triple Quadrupole 

(QqQ), Q-TOF), etc. 

Charge 

Detector 

 

Figure 1.13 summarizes advantages/disadvantages of MS types in metabolomics 

studies. GC-MS is a combination of Gas Chromatography and Mass Spectrometry. 

Firstly, sample is vaporized into the gas phase. Then, components of the sample are 

separated using a column. Separated components are carried by an inert gas such as 

helium, nitrogen or hydrogen. GC-MS is excellent for volatile & non-polar 

metabolites (e.g., sterols) in a single analysis. Also, it provides high resolution. The 

most important disadvantage of GC-MS is that inability to detect thermolabile 

metabolites. In addition, non-volatile compounds must be derivatized before 

introduction to the instrument. On the other hand, LC-MS usually does not need 
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derivatization of metabolites and provides detection of thermolabile compounds 

(Ren et al., 2018).  

 

Liquid chromatography (LC) is based on the interactions of the sample with the 

mobile and stationary phases. Compared to other separation methods, LC offers a 

robust, fast and reproducible analysis opportunity. It is also relatively easy to 

combine with an MS or other measuring instruments. 

 

 

Figure 1. 16. Basic principle of Liquid Chromatography (High Performance Liquid 

Chromatography (HPLC): Principle, Types, Instrumentation and Applications, 

2019) 

LC-MS is an analytical technique which is a combination of Liquid 

Chromatography and Mass Spectrometry.  LC provides a physical separation based 

on hydrophobic interactions, ion exchange or other phsico-chemical features of the 

target compound in a liquid sample/solution using a column. Separation of 

coumpouns is explained with “Retention Time”. It is the time taken for a solute to 

pass through the column. After separation of the target compound, it is ionized via 

ionization source (Figure 1.15 and Table 1.3). Through ionization, charged 

compounds are formed. These charged particles then migrate under high vacuum 

through a series of mass analyzers (quadrupole) by applying electromagnetic fields. 

The charged particles are detected via mass detector according to their mass/charge 

ratio. The resulting MS spectrum shows the mass to charge ratio plotted against the 

peak intensity. 
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Figure 1. 17. Advantages/disadvantages metabolomics studies depends on Mass 

Spectrometry techniques (Ren et al., 2018) 

After obtaining raw data from LC-MS, one of the most important steps is data 

processing before starting statistical analysis. This step involves outlier screening, 

filtering, baseline correction, peak alignment, ion annotation and normalization.  

 

 

Figure 1. 18. Before statistical analysis, steps for raw data processing in LC-MS (B. 

Zhou et al., 2012) 
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Outlier Screening: The aim is to eliminate abnormal peaks compared to their 

biological or analytical replicates. Principal Component Analysis (PCA) is mostly 

used for outlier screening in metabolomics. The detailed information about PCA 

will be given in the next chapter.  

 

Filtering: It is used for elimination of background noise or contaminants in 

untargeted metabolomics. There are plenty of filtering approaches such as median 

filtering, Gaussian, Savitzky-Golayor or moving average filtering. Since this thesis 

is based on targeted metabolomics, the detailed information is not given about 

filtering.  

 

Baseline correction: The correction is based on estimation of low-frequency 

baseline from the raw signal. Baseline shift can be often observed as a gradual 

increase in baseline intensity. It is mainly caused by changes in temperature, long 

term chemical contamination of the detector, mobile phase contamination or 

deficiency in column equilibration (B. Zhou et al., 2012). Examples of baseline 

shifts are given in Figure 1.19.  

 

 

Figure 1. 19. Examples for baseline shift (B. Zhou et al., 2012) 



25 

Peak detection: This step is the transformation of raw data that comes from an MS 

detector. It is defined as peak point of each ion. Peak detection is carried out in two 

steps. First, the centroids of peaks over m/z range are calculated. Then, according 

to retention time ranges, peaks are searched. Regarding this step, most of leading 

device manufacturers have their own peak detection algorithms according to their 

device properties (B. Zhou et al., 2012).    

 

Peak alignment: Retention time of a metabolite can shift across different samples 

even in analytical replicates. The shifts can not be controlled, and its direction can  

occur in unexpected ways. In order to make a correct comparison between samples, 

a peak alignment step should be performed. The corrections for the retention time 

shifts are carried out in order to ensure that the same ion is compared between 

samples. Addition of reference compounds- in similar structure with target ion – 

into the sample is generally used as a landmark to align peaks (B. Zhou et al., 

2012).  

 

Ion annotation: In raw chromatogram, there are many groups of ions with similar 

retention times as in our target ion but with different molecular weights. Presence 

of isotopes, adducts, and neutral-loss fragments can cause differences in molecular 

weights of the same ion. In order to eliminate these unwanted peaks of the same 

metabolite, ion annotation steps should be performed in untargeted analysis (B. 

Zhou et al., 2012). Since this thesis is based on targeted metabolomics, the detailed 

information is not given about this step.  

 

Normalization: It aims to eliminate sample to sample variability. The changes in 

instrument variability, biological handling, metabolite extraction, and ionization 

power may cause variation between runs. In order to reduce systematic variation 

between runs, all results must be normalized with each other (B. Zhou et al., 2012). 

The most common example for normalization in clinical chemistry is metabolite 

detections in urine samples. For instance, catecholamine concentration in urine 

depends on patient’s water consumption or urine osmolality, kidney function or 

sample time. If a patient’s urine has low osmolality, it is assumed that creatinine 



26 

concentration is also low in the same sample. Namely, creatine is a reference 

analyte in urine samples. The concentration of any metabolite in the urine sample 

of individuals is normalized by dividing the creatine concentration in the same 

sample. In other words, the metabolite concentration is normalized to the creatinine 

concentration. After this step, it is checked whether the normalized metabolite 

concentration is within the normal range. (Li et al., 2022).  

 

When metabolomics is compared with proteomics or genomics, normalization is 

more difficult due to the high variety of metabolite structures. To date, there is no 

standard method for directly measuring total metabolites, such as total protein 

measurement, which is commonly used for proteomics. When developing or 

implementing a sample normalization method for metabolomics, the overall 

performance of the method is often evaluated by minimizing variations within the 

same sample group. The easiest and most common way to evaluate variations is the 

PCA score chart.  

 

There are 2 main approaches for normalization in metabolomics: Sample based, 

and Data based (Figure 1.20) (Misra, 2020). In this thesis, a sample-based approach 

(addition of internal standards) was applied in order to normalize results. In this 

method, a chemical with precisely known concentration is added to each sample as 

a reference material. This material can be a stable molecule that will not interfere 

with our analytes in chromatogram, or it can be our isotope-labeled target analyte. 

Disadvantage of this normalization method is that it has high cost.  
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Figure 1. 20. Normalization approaches in metabolomics (Misra, 2020) 

1.2.4. Statistical Analysis 

 

After processing of raw data, results are summarized as a peak list. In this step, the 

aim is the detection of peaks whose levels are significantly different between 

groups. There are 2 main groups for statistical methods: Univariate and 

multivariate analysis. As well known, univariate analysis is based on evaluation of 

statistical importance of each peak, separately (B. Zhou et al., 2012).  The most 

common methods for univariate analysis are t-test, fold change analysis, analysis of 

variance (ANOVA), etc.  

 

If the aim of study is about metabolomic profiling of a specific group, multivariate 

analysis must be performed since plenty of metabolites will be evaluated and 

compared simultaneously (B. Zhou et al., 2012).  

 

1.2.4.1. Multivariate Analysis 

 

The most important step after the identification of metabolites is the evaluation of 

hundreds of metabolite signals between groups, including pattern recognition and 
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clustering steps. In this context, multivariate analysis methods are used to analyze 

and visualize very large metabolomic datasets in an understandable way, taking 

into account all metabolic features with each other and at the same time. Although 

multivariate analyses are divided into unsupervised (e.g., PCA) or supervised (e.g., 

PLS-DA, OPLS-DA), both methods are defined as pattern recognition methods 

used to detect patterns associated with the variables examined (Wang et al., 2012).  

 

1.2.4.1.1. Principal Component Analysis (PCA) 

 

PCA is an unsupervised method used in metabolomics. Unsupervised methods are 

described as a method to find and explore the groups or trends in our results. 

“Unsupervised” means that there is no information about class membership in data. 

Thus, we can obtain only a few prior assumptions and a little prior knowledge of 

the data. Unsupervised methods are commonly used as an overlook method during 

the first step of metabolomics analysis and these methods can help visualize the 

data or verify any unintended issues.  

 

Since more than 3 variables and groups are compared at the same time in 

metabolomics, dimensions are not enough to explain results. Thus, PCA is the most 

common technique in metabolomics to achieve a linear transformation from the 

original data as much as possible by preserving the variance of the original data, 

even by reducing the size in the direction of maximum variance (Wang et al., 

2012).  PCA is used to explain the variance in a dataset with fewer principal 

components (PCs). Since PCA does not use class label information, this leads to 

the conclusion that the PCA model is not always successful in emphasizing the 

differences between the sample groups that are interested in. 

 

The method focuses on the differences between samples. In other words, if the 

differences between samples within a group are larger, the model may not focus on 

the differences between groups. This is particularly the case when the normal 

metabolic variation between samples is much greater than the metabolic disruption 

caused by a disease (Wang et al., 2012). 
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The questions below can be explained by PCA:  

 

• Why do some samples cluster together?  

• Why do different groups (clusters) separate from each other?  

• How is the trend between groups?  

•  Is there any information for future studies in my data at all?” (Brad 

Swarbrick, 2012) 

 

As seen in Figure 1.21, PCA was used in order to define outliers and eliminate 

them from the raw data. To sum up, PCA is used to observe trends, clusters and 

outliers. In this thesis, it was used to get an overview of the data, e.g. to assess 

clustering of samples in the same group and outliers.  

 

 

Figure 1. 21. Before performing of the main statistical analysis, 4 outlier samples 

were identified using PCA and eliminated from the pool in order to proceed 

statistical analysis correctly with remaining results (Pasamontes et al., 2016). 

1.2.4.1.2. Partial Least Square-Discriminant Analysis (PLS-DA) 

 

Due to the unsupervised nature of the PCA algorithm, it has the ability to make a 

dimensional reduction only when the within-group variation is significantly lower 
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than the between-group variation. Therefore, partial least squares discriminant 

analysis (PLS-DA, Partial Least Squares- Discriminant Analysis) has come to be 

important in metabolomic studies, especially in fingerprint studies. 

 

The PLS-DA model reveals the difference between groups clearer than PCA. The 

most important reason is that the distinction between groups in PLS-DA is overly 

optimistic. Therefore, post-PLS-DA validation steps need to be followed to ensure 

that the differences identified between groups are significant. Due to the success of 

PLS-DA in group differentiation, validation steps must be performed especially in 

case of low within-group variability. However, as the number of PLS-DA groups 

increases, the error rate also increases as the distinction becomes more complex. As 

in all chemometric methods, the discriminative power of the model parameters 

(Q2, R2, CV-ANOVA) should be evaluated in order to find a statistically 

significant difference between the two classes in PLS-DA (Szymańska et al., 2012; 

Trygg et al., 2007). 

 

The calculated factors “R2Y” and “Q2Y” are used to evaluate the PLS-DA model 

and the reliability of the test. R2Y describes the fraction of variation. On the other 

hand, Q2Y is a measure of the predictability of the model. R2Y and Q2Y scores 

range from 0 to 1, and an R2Y value of 1 indicates that 100% of the variance can 

be explained by the model. If the Q2Y value is close to 1, it shows that the model is 

highly reliable in the validation tests. R2 score is always greater than Q2 score. 

Studies have requested that R2 and Q2 scores should be as close to 1 as possible 

and the difference between them should be less than 0.3 (Szymańska et al., 2012). 

For classification purposes, Y is a dummy matrix, i.e., 0s and 1s are often used to 

represent the group assignment of samples. It is important to note that variable 

importance in projection (VIP) values estimate the importance of each variable in 

the projection used in a PLS model and are often used for variable selection.  

 

When measured metabolite numbers are higher than sample numbers at least twice, 

PLS-DA can perfectly separate groups by chance. This separation is explained with 
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the “curse of dimensionality”, that predicts the sparsity of the data to grow 

increasingly faster with the number of dimensions.  

For example, about the “curse of dimensionality” term from Vishwesh, K., “It’s 

easy to catch a caterpillar moving in a tube (1 dimension). It’s harder to catch a 

dog if it were running around on the plane (two dimensions). It’s much harder to 

hunt birds, which now have an extra dimension they can move in. If we pretend that 

ghosts are higher-dimensional beings, those are even more difficult to catch”.  

 

This term can be seen only in a range of ratios from 2:1 to 1:200. In plenty of 

omics studies especially in genomics, gene:sample ratios can even exceed 1:1000 

(i.e., data sets with 25 samples and 25,000 genes are common). For this reason, 

sample size determination is a crucial step during designing an experiment plan.  

 

1.2.4.1.3. Validation of Modeling Method 

 

As mentioned in the previous chapter, PLS/OPLS models try to find a linear 

relationship between a X predictor matrix (e.g., spectrometric data of biological 

samples) and a Y response matrix (e.g., clinical results, treatment...). Generally, in 

metabolomics studies, the X predictor matrix has more columns (predictor 

variables) than rows (individuals) (Triba et al., 2015). Thus, results may have false-

positive predictive power (overfitted & overestimated), as preliminary studies are 

conducted with a small sample size and plenty of metabolites are tested at the same 

time. Therefore, post-assessment validation of appropriate modeling is essential to 

understand the actual performance of a model and potential biomarkers. 

 

In order to prove the ability of estimation power of the model, the only way to 

predict Y values of new individuals is to predict individuals from an independent 

dataset (i.e., that were not used to build this model). It means that the data set 

should be divided into 2 groups as training and test set. The training set is used for 

building the model and the test set is used for the estimation of predictability.  
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The purpose of validation is to measure the predictive ability of the model. 

Validation can be done in two ways, internally and externally. In external 

verification, new data is collected and analyzed in the same way as the samples 

after processing. In internal validation, the existing data set is divided into two 

separate groups for modeling and validation. If there is no test set (Triba et al., 

2015), the cross-validation analysis is the alternative strategy to evaluate the 

quality of a model. Different cross validation procedures exist. 

 

Cross validation method is a technique that can be applied to different types of 

models, including classification models. The most used cross-validation techniques 

are leave-one-out cross-validation-LOOCV and k-fold cross-validation. In a study 

where the sample size is N in LOOCV, 1 sample is left out each time, and a total of 

N - 1 sample is used as a training set, and the remaining sample is used for testing. 

As a result, this process is repeated N times.  

 

1.2.5. Literature Survey of Metabolomics Studies in AML 

 

After the discovery of 2-hydroxyglutarate as a mutation biomarker in IDH mutated 

AML patients via metabolomics, it has not only been used as a mutation marker in 

AML, but has also enabled the discovery of inhibitor drugs for isocitrate 

dehydrogenase mutation and the follow-up of treatment through this 

oncometabolite (Abou Dalle & DiNardo, 2018; Madala et al., 2018). In line with 

this example, the discovery of new oncometabolites enables the discovery of new 

cancer biomarkers as well as the identification of protein targets in relevant 

metabolic pathways. Since these proteins provide prognostic information such as 

drug resistance and metastasis risk in the disease mechanism, they may help in the 

development of new drugs. For these reasons, cancer metabolomics studies have 

gained importance in recent years and large-scale studies are carried out today 

(Avuthu & Guda, 2022; Ketavarapu et al., 2022; Roth & Powers, 2022).  

 

The reason for performing studies on metabolite screening on AML patient 

samples is because of the effect of protein anomalies observed in patients on the 
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increase/decrease of biomolecules in metabolism, especially carbohydrate, amino 

acid and lipid metabolism (W.-L. Chen et al., 2014; Fultang et al., 2021; 

Muscaritoli et al., 1999a, 1999b; Tabe et al., 2019).  

 

To give an example for each mutation, in the study conducted by Ju et al. (Ju et al., 

2017) in leukemia cells, it was shown by cell culture studies that the FLT3-ITD 

mutation increases the expression of the mitochondrial hexokinase-2 enzyme, 

increasing the  dependence on glycolysis and making them highly sensitive to 

glycolytic inhibition.  

 

The most comprehensive metabolomic study conducted until 2022, in terms of the 

number of patients and covering all AML subgroups, is published by Chen et al. in 

Blood Journal (W.-L. Chen et al., 2014). This AML study is intended to find a 

common metabolomic signature in all AML patients. For this purpose, 229 AML 

patients were used. In the cytogenetically normal AML group, 6 metabolites were 

significantly different (Lactate, 2-oxoglutarate, pyruvate, 2-HG, glycerol-3-

phosphate, citrate) compared with healthy controls. After cytogenetically risk 

grouping, metabolomic studies were performed according to molecular 

abnormalities in the cytogenetically normal patient group, which is the most 

common group, since they did not see a significant metabolomic difference 

between the groups. 

 

 After this comprehensive validation study, Wang et al. published in 2019 

"Identification of novel serum biomarker for the detection of acute myeloid 

leukemia based on LC-MS". In this study, the aim was to find a common 

metabolite biomarker. For this purpose, samples of 55 AML patients were scanned 

by LC-MS and untargeted metabolomic analysis was performed. According to their 

results, metabolic differences associated with AML are mainly involved in amino 

acid metabolism such as alanine, aspartate, phenylalanine, glutamate, taurine and 

tryptophan metabolism; d-Glutamine and d-glutamate metabolism and also fatty 

acid metabolism. 
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In another study, plasma and mononuclear cell samples of 8 individuals with 

FLT3-ITD mutation were compared in individuals with AML but wild type for 

FLT3 by LC-MS/MS-based untargeted metabolomic profiling. It was found that 

the amount of 21 and 33 different metabolites varied between the two groups in 

plasma and cell samples, respectively (Stockard et al., 2018). When metabolite-

related pathway analysis was performed, it was emphasized that these metabolites,  

were associated with pathways such as purine and tryptophan metabolism, and 

fatty acid oxidation. It was stated that the study was the first exploratory study in 

terms of metabolomic profiling of the FLT3-ITD mutation, and it was stated that a 

comprehensive cohort study should be conducted to carry out validations. 

 

According to the study belonging Gallipoli et al., it has been shown by LC/MS 

metabolomic profiling and cell culture studies that when mutant AML cells are 

inhibited using specific tyrosine kinase inhibitors, a decrease in TCA pathway 

activity is observed and the cell begins to take glutamine uninterruptedly into the 

cell for use in main carbon metabolism and use it as fuel (Gallipoli et al., 2018). 

 

1.2.5.1. Amino acids in Metabolism 

 

After the removal of amino groups, carbon skeleton of amino acids can be 

degraded by dehydrogenation, decarboxylation, and other reactions. With these 

ways, their carbon backbones are utilized to citric acid cycle. Then, they can be 

degraded to acetyl-CoA. At the end, they are completely oxidized to carbon 

dioxide and water via oxidative phosphorylation (Nelson, 2008).  

Some amino acids can be degraded to ketones, some to glucose or some to both. In 

specific conditions, some amino acids may be a significant source of metabolic 

energy. Consequently, amino acid metabolism is fused into intermediary 

metabolism (Nelson, 2008). 

The carbon backbones of amino acids are included in citric acid cycle via five 

intermediates: acetyl CoA, alpha-ketoglutarate, succinyl CoA, fumarate and 
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oxaloacetate. Alanine, cysteine, glycine, serine, threonine, and tryptophan can be 

directly degraded to pyruvate, then they can be converted to acetyl-CoA or 

oxaloacetate. On the other hand, isoleucine, leucine, lysine, threonine, and 

tryptophan can be directly degraded to acetyl-CoA (Nelson, 2008).  

 

Arginine, glutamate, glutamine, histidine and proline can form alpha-ketoglutarate. 

Isoleucine, methionine, threonine and valine can form succinyl-CoA. 

Phenylalanine and tyrosine can produce fumarate. Asparagine and aspartate can 

produce oxaloacetate (Nelson, 2008).  

 

As a detailed example, the carbon structure of asparagine and aspartate are utilized 

in citric acid cycle as oxaloacetate mentioned above. In the first step, asparaginase 

catalyzes the conversion of asparagine to aspartate. Then, aspartate 

aminotransferase catalyzes the conversion of aspartate to oxaloacetate. In the 

meantime, alpha-ketoglutarate is converted to glutamate using pyridoxal 

phosphate. At the end of the catabolic pathway for asparagine and aspartate, the 

formation of glutamate and oxaloacetate is achieved.  Therefore, glutamate and 

aspartate metabolism are tightly connected (Nelson, 2008).  

 

Tryptophan can be cleaved in 4 steps to form alanine. Then, alanine can be 

converted to pyruvate. As a second path for tryptophan, it can be degraded to 

alpha-ketoadipate to produce acetoacetyl-CoA, resulting formation of acetyl-CoA. 

Acetyl-CoA and carnitine merge to form acyl-CoA in cytoplasm. With this 

reaction, it can pass through mitochondria membrane via acylcarnitine transferase.   

 

Since arginine and histidine contain five adjacent carbons, the degradations of 

these amino acids are quite complex. Arginine is converted into ornithine by urea 

cycle. In next steps, ornithine can be converted to glutamate. On the other hand, 

histidine is degraded to glutamate in four steps.  

 

Glutamate is one of the most abundant amino acids in human serum. It is the major 

nitrogen donor, especially through aspartame and glycine. Nitrogen availability is 
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crucial for biosynthesis of secondary metabolites. In addition, glutamate is also 

used in biosynthesis of glutathione. Since cancer cells need more biofuel for 

increased energy requirement and antioxidant, these important contributions 

mentioned above are vital for cancer cells as well as healthy cells. Many studies 

showed that most of cancer cells are glutamate dependent (Quek et al., 2022; Roma 

et al., 2022; Tabatabaee & Menard, 2022). In some cancer types, glutamate 

concentration is correlated with progression of the cancer (Koochekpour et al., 

2012). As mentioned above, glutamate and aspartate metabolism are tightly 

connected. Gorgoglione et al. reviewed how glutamine-derived aspartate 

biosynthesis is crucial for cancer cells (Gorgoglione et al., 2022).  

 

With the light of these information, amino acids are irreplaceable precursors for 

both cancer and healthy cells.  

 

1.3. Aim of Study 

 

Problem definition: As written in chapter 1.1.2, AML is rapidly progressing cancer 

type that requires urgent treatment. In order to define mutation status of newly 

diagnosed patients, cytogenetic tests must be performed. Since the obtaining of 

testing results take 14-21 days, rapid diagnosis tests are extremely desired by 

clinicians in Turkey. Also, it should be noted that, according to Röllig et al., the 

risk in awaiting testing results is less than the risk in beginning therapy before 

results are available (Röllig et al., 2019). Due to the high incidence and strategic 

importance in risk stratification of patients, investigation of NPM1 and FLT3 

mutations in AML patients compared to healthy individuals was chosen for this 

thesis.  

 

The rationale for the hypothesis is based on the previous studies (given in the 

section 1.2.5), which indicate a link between NPM1 and FLT3-ITD mutations with 

glucose and amino acid metabolism.  
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Cancer metabolism focuses on central carbon metabolism, especially on glycolysis 

and citric acid cycle. Since the relation of amino acids with the components of 

citric acid cycle is well-known, new studies have shed light on the importance of 

amino acids for most types of cancer. Several studies have indicated that changes 

in amino acid levels for AML patients are remarkable (Bjelosevic et al., 2021; 

Gregory et al., 2019; Muscaritoli et al., 1999b; Mussai et al., 2015).  

 

 

Figure 1. 22. Amino acids as precursors for the human metabolism (Fultang et al., 

2021) 

Fatty acid oxidation is the main source of energy in AML cells for their survival. 

Carnitine palmitoyl transferase 1A (CPT1A) and carnitine transporter CT2 

(SLC22A16) proteins are rate limiting actors of fatty acid oxidation. These proteins 

are overexpressed in AML. Therefore, targeting acylcarnitine metabolism is one of 

the new therapeutic approaches for AML treatment.  

 

Aim of this thesis is to develop a prediction method associated with FLT3 and 

NPM1 mutations in Acute Myeloid Leukemia patients using LC-MS/MS targeted 
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metabolomics approach, which might provide fast clinical data for the proper first-

response treatment until obtaining mutation results for de novo AML patient. 

 

In accordance with this aim, the measurements of amino acids and acylcarnitines 

were performed to define a pattern for discrimination of the mutations in AML 

serum and whole blood samples.  
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CHAPTER 2 

 

 

MATERIAL AND METHOD 

 

 

2.1. Material 

 

2.2. Chemicals and Consumables 

 

Chemical Supplier 

Acetonitrile Merck 

Methanol Merck 

Ammonium Formate Sigma 

Hydrochloric Acid Kimetsan 

1-Propanol Merck 

Pyridine Merck 

Whatman paper-CF10 Gelifesciences 

Silica Gel Sigma 

Wax Paper VWR 

Nitrogen Tube Linde Gaz 

EDTA & Serum Tubes BD Vacutainer 

 

In order to quantify the amino acid panel, Bome Trivitron (Turkey) in house QAA 

kit was used. For the measurements of acylcarnitine panel, Bome Trivitron 

(Turkey) in house Newborn Screening kit was used.  
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2.2.1. Equipment 

 

Equipment Brand 

Centrifuge  Thermo Scientific (USA), 

Megafuge 40 

Cutter  HZMM (China) 

Deionized Water System  Sartorius (Germany) 

ESI Triple Quadrupole LC-MS  Shimadzu (Japan), 8040 

Freezer  GFL (Germany), 6445 

Microcentrifuge Sigma (Germany), 1-14 

Micropipette Set Brand (Germany), Transferpette S 

series 

Nitrogen blowdown evaporator  VLM (Germany), EVA-EC2S 

pH meter  Hanna (USA), HI110 

Precision Scale Kern (Germany), ABS120 

Refrigerator Vestel (Turkey) 

Thermal mixer  Biosan (Latvia), TS100C 

Waterbath Nüve (Turkey)  

Vortex Daihan Scientific (Korea), VM-10 

 

2.2.2. Patient Samples 

 

All AML patient (n=42) and control serum& blood samples (n=16) were obtained 

from Ankara University Medical Faculty Hematology Department according to the 

ethics committee approval as seen in Figure 2.1.  
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Figure 2. 1. Ethics committee approval 

The samples of de novo AML patients who did not receive any treatment were 

collected. Other inclusion criteria are as follows:  
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• Patients >18 years old 

• Having no metabolism disorders (e.g., type 1/2 diabetes, glycogen storage 

disorders, fructose metabolism disorders, lipid metabolism disorders, any 

type of liver/kidney/pancreas/ malfunction) 

• Patients whose have sample collection time less than 24 hours    

 

Two types of venous blood samples were collected from all patients, one into the 

EDTA tube as a whole blood sample and one into the gel tube as a serum sample. 

In order to store serum samples; gel sample tube was immediately separated at 

2500 rpm in 15 minutes via centrifugation. Supernatant was aliquoted and freezed 

at -80°C until analysis.  

 

In order to store whole blood samples in a stabilized form, EDTA tube samples 

were prepared according to “Dried Blood Spot” method (Figure 2.2.) that is 

peculiar in newborn screening prepared with heel lance blood. In this method, 50 

µL blood was aspirated with micropipette. Then, the blood was dropped onto 

Whatman Paper without touching the filter paper directly with the tip. During this 

step, obtaining a fully saturated blood circle is important. This procedure was 

repeated until the all sample was finished. After dropping, Whatman paper was 

dried for 12-24 hours in a humidity-controlled environment in order to prevent 

moisture-induced degradation. After the drying step, whatman paper was rolled 

with wax paper and placed into an Aluminium foil bag with a silica gel. Then, in 

order to prevent air contact, the foil bag was sealed. DBS samples were also stored 

at -80°C until analysis time.  
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Figure 2. 2. After dropping of EDTA sample onto Whatman paper 

2.3. Method 

 

2.3.1. Risk Stratification of AML Patients 

 

All de novo AML patients were classified according to the risk classification 

algorithm of NCCN AML Guideline. As also mentioned in Chapter 1.1.1, there are 

3 risk classes: Favorable, Intermediate, Unfavorable.  

 

Patient’s risk status and the detailed clinical diagnosis and mutation reports were 

obtained from the hospital. The clinical features of the participants are given in 

Chapter 3.  

 

FLT3 and NPM1 mutation tests are routinely performed in Ankara University 

Hematology Department. For NPM1 mutation tests, the target region was amplified 

by PCR reaction using specific primers. The obtained product was visualized and 

evaluated after agarose gel electrophoresis. PCR was performed for sequence 

analysis using a pair of primers. Sequence analysis of the obtained PCR products 

was performed by BigDye Terminator (Thermo, USA) method using ABI 3130 

(Thermo,USA) analyzer. For FLT3 mutation tests. The same approach is used to 

determine FLT3 mutations.  

In this study, there are 5 patient groups:  



44 

 

1. Healthy individuals as a control group 

2. NPM1 (-), FLT3 (-) AML patients 

3. NPM1 (+), FLT3 (+) AML patients 

4. NPM1 (+), FLT3 (-) AML patients 

5. NPM1 (-), FLT3 (+) AML patients 

 

2.3.2. Targeted Metabolomics Studies 

 

To define metabolomic patterns for NPM1 and FLT3 mutations, the panel of amino 

acid and acylcarnitine were measured from serum samples. Three technical 

replicates were prepared for each panel measurement and measured in different 

runs.  

 

2.3.2.1. Amino Acid Panel 

 

Bome Trivitron (Turkey) in house Quantitative Amino Acid LC-MS/MS kit was 

used for targeted amino acid measurements. The method is based on derivatization 

of amino acids and measured with Multiple Reaction Monitoring (MRM) -also 

known as Selective Reaction Monitoring- mode of LC-MS/MS system.  

 

Triple quadrupole MS is used in the MRM method. Firstly, the ion which is 

corresponded with our compound of interest is targeted for fragmentation to obtain 

daughter ions (one or more). These daughter ions which are specific to our target 

molecule can be selected for quantification (Figure 2.3). By ignoring all other ions, 

working with the MRM mode increases the specificity and sensitivity of the 

measurement of the target molecule.  
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Figure 2. 3. MRM mode in MS/MS 

During all measurements, as an internal quality control, bilevel Bome Trivitron 

(Turkey) amino acid control materials with assigned values were prepared in the 

way as same as the patient samples. QC results must be within ±1SD range to be 

acceptable. For each analyte of the panel, isotope labeled analytical standards were 

used for normalization and quantification process.  

 

Amino acid panel is given in Table 2.1. The flow of sample preparation is given in 

Figure 2.4. The details about analytical conditions are given in Table 2.2. 

  

Table 2. 1. Amino acid panel 

Alanine Hydroxylysine 

Alpha amino adipic acid Hydroxyproline 

Alpha amino butyric acid Isoleucine 

Alpha amino pimelic acid Leucine 

Arginine Lysine 

Argininosuccinic acid Methionine 

Asparagine 1-methyl Histidine 

Aspartic Acid Ornithine 

Beta alanine Phenylalanine 
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Table 2.1. (continued)  

Beta-aminoisobutyric acid Proline 

Citrulline Sarcosine 

Cystathionine Serine 

GABA Taurine 

Glutamine Threonine 

Glutamic acid Tryptophan 

Glycine Tyrosine 

Histidine Valine 

 

 

Figure 2. 4. Sample preparation for the amino acid measurements 
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Table 2. 2. Analytical conditions for amino acid measurements 

Device Shimadzu 8040 LC-MS/MS 

Ion Source ESI  

Interface Temperature 300°C 

DL Temperature 250°C 

Heater Temperature 400°C 

Drying Gas  Nitrogen 10 L/min. 

Nebulizer Gas Nitrogen 3 L/min. 

Heating Gas Air 10 L/min.  

Column Trimaris QAA Kit Column 

(Commercial Secret) 

Column Temperature 40°C 

Flow Rate 0.25 mL/min.  

Sample amount 200 µL 

 

Gradient 

 

Duration A % B % 

0:00 65 35 

12:00 35 65 

12:01 5 95 

16:00 5 95 

16:01 65 35 

20:00 65 35 
 

 

Calculation of analyte concentration is given as a formula:  

 

2.3.2.2. Acylcarnitine Panel 

 

Since determination of fatty acid oxidation defects via tandem MS is important for 

newborn screening programs globally, Bome Trivitron in house Expanded 



48 

Newborn Screening LC-MS/MS kit was chosen to measure targeted acylcarnitine 

panels. It is important to note that the tandem LC-MS/MS method for the expanded 

newborn screening panel is a standard, open-source method in all newborn 

screening laboratories.  

 

The total body carnitine pool is composed of L-Carnitine, C2, short-chain (C3–C5), 

medium chain (C6–C12), and long-chain (C14–C20) acylcarnitine [7]. The 

conventional abbreviation for acylcarnitine is shown as C followed by the chain 

length number, the number of saturated bonds after the colon, DC indicates a 

dicarboxylic acid, and an OH represents a hydroxyl group (e.g., C16:1-OH, 16 

carbons with 1 double bond and a hydroxyl attached to the acyl group) (McCann et 

al., 2021).  

 

For this analysis, a DBS sample should be used. The flow for sample preparation of 

DBS was given in Chapter 2.1.3. Dried blood samples that are irregular in shape 

and not homogeneously distributed should not be used.  

 

The sample preparation for acylcarnitine panel is as follows:  

 

• A sample of 3.2 mm diameter is punched via puncher (Figure 2.5.) from the 

dried blood sample and placed into a 96-well plate. 

• Add 200 µl of Reagent 1 (Metabolite Extraction Solvent) to each well 

containing the DBS. Then, the plate is covered and mixed at 300 rpm for 30 

min at room temperature. 

• After mixing, the liquid extracts are transferred to a clean well and 

evaporated under nitrogen until there is no liquid left.  

• Add 60.0 µl of Reagent 2 (Internal Standards for each metabolite of panel) 

to the dried wells. The well plate is covered well again. It is mixed at 300 

rpm for 20 min at 65 °C. 

• After mixing, it is evaporated until there is no liquid in the wells. 
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• 200 µl of Reagent 3 is added to the dried wells and the samples are 

dissolved. 10.0 µl is injected into the chromatography system. Prepared 

samples are stable for 24 hours. 

 

During all measurements, as an internal quality control, bilevel commercial quality 

control materials with assigned values were prepared under the same conditions 

with patient samples. QC results must be within ±1SD range to be valid.  

 

The isotope dilution method is used to calculate the results. Analyte concentrations 

are determined by dividing the known concentrations by the area of their related 

internal standards. It is recommended to use Newborn Screening software suitable 

for the model of the MS device used for easy calculation. In this thesis, Shimadzu 

Neonatal Solution was used for automatic calculation.  

 

 

Figure 2. 5. Punching process from DBS samples 

Acylcarnitine panel is given in Table 2.3. The details about analytical conditions 

are given in Table 2.4.  
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Table 2. 3. Acylcarnitine panel 

C0 Carnitine (free carnitine) C8 Carnitine 

C2 Carnitine C3DC Carnitine 

C3 Carnitine C10:1 Carnitine 

C4 Carnitine C10 Carnitine 

C5 Carnitine C4DC Carnitine 

C4OH Carnitine C5DC Carnitine 

C6 Carnitine C12 Carnitine 

C5OH Carnitine C6DC Carnitine 

C8:1 Carnitine C14:2 Carnitine 

 

Table 2. 4. Analytical conditions for acylcarnitine measurements 

Device SHIMADZU 8040  

 

Ionization source ESI 

Interface Temperature 300 °C 

DL Temperature 250 °C 

Heater Temperature 400 °C 

Drying Gas 10 L/min. 

Nebulizer Gas  3 L/min. 

Heating Gas 10 L/min. 

Column No analytical column 

Guard column is used for protecting 

device from contaminants. 

Flow rate 0,125 mL/min.  

Sample volume 10 µL 

Isocratic program  Duration % A % B 

0:00 0 100 

2:00 0 100 

 

2.3.3. Data Analysis 

 

Spectral data processing (baseline correction, peak identification, peak alignment, 

normalization) and analyte quantification was performed with the “LabSolutions” 

software developed by Shimadzu.  
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Before starting with statistical analysis, preprocessing steps (centering, scaling, 

normalization) were applied via “Simca 17 (Sartorius, Germany)” software.   

 

Then, basic statistical calculations (Mean, SD, CV%, etc.) were performed with 

“Excel”. Univariate statistical analysis (ANOVA) was performed and visualized as 

bar graphs with the “GraphPad Prism 8 (USA)” software. It is assumed that the 

variation of each sample group is not equal.  

 

In order to find patterns and correlations between several variables (analytes) 

simultaneously, multivariate statistical analyses (PCA, PLS-DA), VIP, cross 

validation and pathway analysis were performed with “Simca-P+” and 

“Metaboanalyst 5.0” software. Firstly, score graphs created via PCA and PLS-DA 

methods have provided comprehensible visual graphs by dimension reduction of 

complex spectral data. Secondly, VIP analysis was performed. The analytes were 

ranked in order of their contributions according to the model obtained from the 

PLS-DA method.  

 

In addition to being compatible with the dataset used in the model, a good PLS-DA 

model should also be in harmony with new data. Our training model may have 

overfitting or underfitting of unknown samples. Therefore, cross validation was 

performed to test the reliability of our model. There are different types of cross 

validation techniques. However, the basis of these techniques is same:  

 

- split data into subsets,  

- then hold out a subset and test the model with remaining sets.  

 

In this study, Leave One Out Cross Validation (LOOCV) technique was applied to 

our model. This technique leaves 1 data point out of training data. For instance, if a 

data set have n samples, then, n-1 samples are used to train the model and p points 

are used as the validation set. This is repeated for all combinations in which the 

original sample can be separated this way, and then the error is averaged for all 

trials, to give overall effectiveness. 
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The analytes with a value of >1 in the VIP analysis were tested in databases 

(KEGG) and the most prominent pathways were identified and visualized via 

Metaboanalyst 5.0. 
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CHAPTER 3 

 

 

RESULTS AND DISCUSSION 

 

 

3.1. Clinical Characteristics  

 

Serum and whole blood EDTA samples were collected from 41 AML patients at 

diagnosis prior to initiation of any chemotherapy. As a negative control, serum and 

whole blood samples were also collected from 16 healthy donors. The clinical 

features of participants are given in Table 3.1. The biochemistry and Complete 

Blood Counting (CBC) results of all healthy donors were in the reference range. 

On the other hand, hyperglycemia in the nondiabetic individuals was observed in 

some AML cases. Recent studies have indicated that in patients with severe 

infections, hyperglycemia can be caused by a catabolic state with disruption of 

glucose uptake. 

 

According to patient criteria given in Chapter 2, sample numbers of each group are 

as below:  

 

1. Healthy individuals as a control group: 16  

2. NPM1 (-), FLT3 (-) AML patients: 28 

3. NPM1 (+), FLT3 (+) AML patients: 3 

4. NPM1 (+), FLT3 (-) AML patients: 3 

5. NPM1 (-), FLT3 (+) AML patients: 7 
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Table 3. 1. Clinical characteristics of AML patients and healthy donors 

 Healthy Controls 

n=16 

AML 

n=42 

Reference 

Ranges 

Gender 

- Female 

- Male 

 

11 

5 

 

14 

27 

 

N/A 

 

Age 

- Median 

- Range 

 

36 

22-47 

 

50 

20-80 

 

N/A 

White Blood Cells 

- Median 

- Range 

 

6.15 

4.21-8.39 

 

22.6 

0.65-141 

 

4.50-11.0  

(10^9cells/L) 

Red Blood Cells 

- Median 

- Range 

 

4.29 

3.54-5.27 

 

2.78 

1.37-4.75 

 

3.80-5.30 

(10^12cells/L) 

Hemoglobin 

- Median 

- Range 

 

13.5 

11.6-15.7 

 

8.69 

5.10-13.8 

 

11.7-16.0 

g/dL 

Platelet 

- Median 

- Range 

 

251 

164-361 

 

73.2 

11.0-452 

 

150-400 

(10^9cells/L) 

ALT 

- Median 

- Range 

 

16.3 

7.00-29.0 

 

27.0 

7.00-148 

 

0.00-35.0 

(U/L) 

AST 

- Median 

- Range 

 

14.7 

9.00-26.0 

 

27.0 

8.00-105 

 

0.00-35.0 

(U/L) 

ALP 

- Median 

- Range 

 

68.3 

47.0-101 

 

91.0 

23.0-461 

 

35.0-105 

(U/L) 

GGT 

- Median 

- Range 

 

17.9 

8.00-29.0 

 

49.8 

9.00-400 

 

6.00-42.0 

(U/L) 

LDH 

- Median 

- Range 

 

161 

137-184 

 

470 

134-2500 

 

135-214 

(U/L) 

Urea 

- Median 

- Range 

 

19.9 

14.0-31.0 

 

33.4 

13.0-71.0 

 

12.8-42.8 

(mg/dL) 

Uric Acid 

- Median 

- Range 

 

3.50 

2.50-5.10 

 

5.25 

2.00-10.00 

 

2.40-5.70 

(mg/dL) 

Serum Creatinine 

- Median 

- Range 

 

0.66 

0.51-0.81 

 

0.81 

0.34-1.42 

 

0.50-0.90 

(mg/dL) 
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Table 3.1. (continued)    

Glucose 

- Median 

- Range 

 

87.9 

78.0-96.0 

 

112 

84.0-162 

 

84.0-172 

(mg/dL) 

Triglycerides 

- Median 

- Range 

 

90.1 

48.0-141 

 

140 

55.0-242 

 

0.00-150 

(mg/dL) 

Cholesterol 

- Median 

- Range 

 

131 

101-155 

 

147 

118-214 

 

0.00-180 

(mg/dL) 

CRP 

- Median 

- Range 

 

 

0.69 

0.10-1.60 

 

59.6 

0.3-311 

 

0.00-5.00 

(mg/L) 

 

3.2. Amino Acid Profile 

 

36 parameters in the amino acid panel were measured. All samples were studied in 

the same run with three technical replicates.  The summary of amino acid results 

(Mean, Standard Deviation and CV%) for each group is given in Table 3.2. 

According to these results, Brown-Forsythe and Welch ANOVA were performed 

with Dunnett’s method in order to make comparison between sample groups. 

ANOVA results of the analytes that show significant differences compared with 

mutation groups are given in Figure 3.1.  

 

 

 

 

 

 

 

 

 



56 

Table 3. 2. The summary of amino acid results 
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Figure 3. 1. ANOVA results in amino acid panel. Asterisks * denote statistical 

significance between sample groups at p<0.05. 

When compared more than two sample groups with a high number of analytes, it is 

hard to interpret obtained results with univariate analysis. Nevertheless, univariate 

analysis is a useful method to take a glance at the data before multivariate analysis. 



58 

Regarding the evaluation of amino acid results, no study was found comparing the 

amino acid levels between mutation groups.  

 

According to Figure 3.1, certain analytes may have a higher contribution to our 

model to be developed that provide the classification of patient samples. For 

instance, as seen in Figure 3.1, since some analytes have only significance for one 

mutation -alanine, alpha-aminobutyric acid, asparagine, leucine, tryptophan, serine-

these parameters may be more important in terms of class discrimination.  

 

Methionine levels in mutation groups were found significantly lower than healthy 

group. This finding is also similar with previous studies in literature (Muscaritoli et 

al., 1999c; X. Zhou et al., 2020). Hypermethylation of histone and DNA is a 

characteristic feature of myeloid malignancies (Goldman et al., 2019; Holz-

Schietinger et al., 2012). The decreased level of methionine in mutation groups is 

explained by increased transmethylation levels in myeloid cells and their 

dependency on methionine.  

 

Glutamine is the most abundant amino acid in human serum (Cruzat et al., 2018). 

Due to increased energy demand and anabolic reactions, cancer cells use glutamine 

as a precursor for de novo glucose and other amino acids synthesis. Glutamine is 

also used as a precursor for alpha-ketoglutarate (α-KG) conversion. Through α-KG 

formation, glutamine contributes in TCA cycle with its carbon skeleton. Glutamate 

can be produced from glutamine via glutaminases (GLS1 and GLS2) in human 

cells. GLSs are overexpressed in AML. The inhibition of GLSs is used as a 

therapeutic approach using bis-2-(5-phenylacetamido-1,2,4thiadiazol-2-yl)ethyl 

sulfide (BPTES) derivative manufacturing by Calithera Biosciences (Cai et al., 

2016; Matre et al., 2016). As seen in Figure 3.1, glutamine levels in mutation 

groups were found significantly lower than healthy group. On the other hand, 

glutamate levels in mutation groups were found significantly higher than healthy 

group. Based on the knowledge of overexpression of glutaminases in AML cells, 

the findings are consistent with the literature (Kreitz et al., 2019; Matre et al., 

2016). 
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In the most type of cancer cells, Tryptophan is degraded as the precursor for 

kynurenine pathway. According to Figure 3.1, tryptophan levels were found 

significantly lower in NPM1(+), FLT3 (-) and NPM1(+), FLT3 (-) mutation groups 

compared with the healthy group. On the other hand, the remained mutation groups 

have higher levels of tryptophan. Regarding this finding, no study has been found 

in literature.   

 

Kikushige et al. (2022) showed that acute leukemia cells are dependent to 

Branched Chain Amino Acid (BCAA) metabolism to maintain stemness 

(Kikushige et al., 2022). According to the study, in acute leukemia cell, BCAA 

transaminase-1 (BCAT1) level is higher than control group. BCAT1 actively 

catabolizes BCAA into Branched Chain Keto Acid (BCKA). As seen in Figure 3.1, 

valine levels were found significantly lower in mutation groups compared with 

healthy group, except NPM1 (+), FLT3 (+). For Isoleucine, when healthy group 

was compared with mutation groups, the only significant difference was observed 

for NPM1 (-), FLT3 (+) group. Contrary to the literature, decreases in BCAA 

levels were not observed for all mutation groups.  

 

After accomplishing multivariate studies, this approach will be re-evaluated 

according to be obtained VIP score of each analyte. 

 

3.3. Acylcarnitine Profile 

 

18 parameters in the acylcarnitine panel were measured from DBS samples 

prepared from whole blood donations. All samples were studied in the same run 

with three technical replicates.  The summary of acylcarnitine results (Mean, 

Standard Deviation and CV%) for each group is given in Table 3.3. According to 

these results, Brown-Forsythe and Welch ANOVA were performed with Dunnett’s 

method in order to make comparison between sample groups. ANOVA result of the 

analytes that shows significant differences compared with mutation groups are 

given in Figure 3.2.  
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Table 3. 3. The summary of acylcarnitine results 
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Figure 3. 2. ANOVA results in acylcarnitine panel. Asterisks * denote statistical 

significance between sample groups at p<0.05.  

As mentioned in amino acid results, certain analytes may have a higher 

contribution to our model. Considering 52 analytes and 58 samples, interpretation 

of the obtained results is quite hard.  Therefore, an advance statistical analysis, 

Multivariate analysis were performed. It is used to find patterns and correlations 

between several variables at the same time. After accomplishing multivariate 

studies, univariate results will be re-evaluated according to be obtained VIP score 

of each analyte. 

 

3.4. Multivariate Analysis 

 

To find a pattern for the classification of 4 patient groups, all panel metabolites 

must be evaluated and compared simultaneously by multivariate analysis. Firstly, a 

PCA model was applied to provide an overview of the results, where no outlier was 

found (Figure 3.3).  
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The first principal component is the direction in space along which projections 

have the largest variance. The second principal component is the direction which 

maximizes variance among all directions orthogonal to the first.  

 

As a result of the PCA model, the most important 2 principal components with the 

highest variance explained 79.0% of the total variance. Namely, 79.0 % of the 

variance of the dependent variable being studied was explained by the variance of 

the independent variable. R2 and Q2 values were calculated as 0.793 and 0.732, 

respectively.  

 

 

Figure 3. 3. PCA 2D Score Plot. Each dot represents a patient sample. R2X[1] and 

R2X[2] symbolizes for Principal Component 1 and Principal Component 2, 

respectively. Each sample group was indicated with a different color. The first 

component explains 75 % of the variation, and the second component 5 %.  

 

Figure 3. 4. PCA 3D score plot 
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The R2 values which are greater than 0.75 (> 0.75) are considered as “strong”, the 

values from 0.50-0.75 is considered as moderate” and the values range from 0.30-

0.49 is considered as “weak” factor loadings. According to this information, the 

obtained PCA model is considered strong.  

 

The last chemometric method used to measure the discriminating power of 

metabolites in sample groups and to visualize possible metabolic changes is PLS-

DA. Obtained result is given in Figure 3.5. The model was explained with 5 

components. R2X, R2Y and Q2 values were calculated as 0.869, 0.845 and 0.619, 

respectively. A close value of Q2 to R2 (difference <0.3) shows that the model has 

high prediction power.  

 

 

Figure 3. 5. PLS-DA Score plot. Each dot represents a patient sample. R2X[1] and 

R2X[2] symbolizes for Principal Component 1 and Principal Component 2, 

respectively. Each sample group was indicated with a different color.  

As mentioned in chapter 1.2.4.1.2, if the Q2Y value is close to 1, it shows that the 

model is highly reliable in the validation tests. R2 score is always greater than Q2 

score. Studies have requested that R2 and Q2 scores should be as close to 1 as 

possible and the difference between them should be less than 0.3 (Szymańska et al., 

2012). 

 

To define the important analytes for class discrimination, loading plot and VIP 

score results are given in Figure 3.6 and 3.7, respectively. Loading plot of the PLS-

DA model. The loading plot is complementary to the score plot and explains how 
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the X-variables relate to each other as well as to group belonging (Y-variable 

symbolized by a group dot). X-variables located near a group dot are positively 

associated with that group. For instance, the control group is characterized by high 

values for Glutamine. On the other hand, NPM1+, FLT3+ group is characterized by 

low values of Glutamine since it is located on the opposite side of the origin of the 

graph.  

 

 

Figure 3. 6. Loading plot of PLS-DA model. X variables (analytes) represents with 

green dot, Y variables (classes) represents with red dot.  

VIP analysis is a weighted sum of squares of the PLS-DA loadings considering the 

amount of explained Y-variable in each dimension. The value of VIP score which 

is greater than 1 is the criteria for identification of significant variables in order to 

define patterns. 

 

 

Figure 3. 7. The results of VIP analysis 
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According to Figure 3.7, the parameters that have a VIP score greater than >1 are 

given in Table 3.4.  

 

Table 3. 4. Significant analytes in the PLS-DA model 

Analyte VIP Score 

C0 carnitine 1.90  

Glutamic acid 1.74  

Aspartic acid 1.72  

Tryptophan 1.72 

Histidine 1.63  

Isoleucine 1.59  

Alpha-aminobutyric acid 1.53 

Valine 1.36  

Alanine 1.31  

Asparagine 1.30 

Arginine 1.28 

Ornithine 1.24 

Leucine 1.21 

Taurine 1.20 

Tyrosine 1.08 

Proline 1.06 

Serine 1.03 

 

Fatty acid oxidation is the main source of energy for most cancer cells in order to 

survive. Thus, they express high levels of fatty acid oxidation enzymes in the 

related reactions. In these reactions, the cofactor carnitine is essential since it serves 

as a “shuttle-molecule” to allow fatty acid acyl moieties entering the mitochondrial 

matrix where these molecules are oxidized via the β-oxidation pathway. Therefore, 

the role of carnitine in cancer cell metabolism is important. Fatty acid oxidation is 

also main source of energy in AML cells for their survival. Carnitine palmitoyl 

transferase 1A (CPT1A) and carnitine transporter CT2 (SLC22A16) proteins are 
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rate limiting actors of fatty acid oxidation. These proteins are overexpressed in 

AML. According to this information, in the VIP result, it is not surprising to see 

free carnitine in the first rank (Carracedo et al., 2013; Shi et al., 2016; Wu et al., 

2015).  

 

Amino acids are not only essential for proteins but also intermediate metabolites 

fueling multiple biosynthetic pathways. Muscaritoli et al. showed that glycine, 

glutamic acid, ornithine and tryptopan levels are significantly higher in AML 

patients compared with healthy subjects (Muscaritoli et al., 1999a). According to 

the obtained results seen in Table 3.4, the changes in the mentioned amino acids 

were found remarkable for class discrimination.    

 

In another study published by Tabe et al., the aim of article was focused on the 

deprivation of 4 key amino acids (arginine, asparagine, glutamine and cysteine) in 

the important pathways of hematological malignancies as a new therapeutic 

approach (Tabe et al., 2019). The results showed that the deprivation of these 

amino acids increase the vulnerability of cancer cells in AML. Since these amino 

acids are important for the biosynthesis of proteins that are necessary for the 

survival and proliferation of AML cells, the finding that they are significantly 

important in class difference is consistent with the literature.  

 

In order to promote proliferation in AML cells, protein modifications and 

biosynthesis reactions including nitrogen anabolic processes are necessary. These 

steps can also be rate limiting for cell proliferation. The nitrogen required 

biosynthetic pathways consume high amounts of amino acids as a nitrogen source. 

In glutaminolysis, glutamate is formed by degradation of glutamine. Glutamate can 

be directly participated in biosynthesis or indirectly provide nitrogen source for 

biosynthetic reactions. Due to its contributions of glutamate, glutaminolysis 

provides the ultimate mechanism to maintain the cytosolic homeostasis of 

glutamate. Regarding the importance of glutaminolysis in AML, Gallipoli et al. 

(Gallipoli et al., 2018) showed that glutaminolysis is a metabolic dependency in 

FL3 mutations in the in vivo model of AML. In Table 3.4, the VIP result showed 
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that glutamic acid/glutamate is the second important analyte for class 

discrimination. As seen in Figure 3.6, glutamic acid have importance for the 

discrimination of FLT3+ mutation groups.  

 

When the univariate and multivariate analysis are compared, the parameters 

(alanine, alpha-aminobutyric acid, asparagine, leucine, tryptophan, serine) that 

were significantly different in a one mutation type, have also remarkably 

importance for the class discrimination in the VIP analysis.  

Even though the obtained results seem to be consistent with the previous studies, 

the developed PLS-DA model for the discrimination of mutation groups in AML 

samples should be validated.  

 

3.4.1. Validation 

 

In case of absence of validation data set or small sample population, permutation 

tests are effective for verifying the developed model. As mentioned in chapter 

2.2.3, in a permutation test, the class labels and samples are permuted, they are 

randomly assigned to different individuals. With the ‘wrong’ class labels, again a 

classification model is calculated. The basis of the permutation test is that with the 

wrong class labels, the newly calculated classification model should not be able to 

predict the classes very well. As the groups are formed in a random way, the 

assumption is that no difference exists between them. 

 

In Figure 3.8, Permutation tests with 1000 cycles were performed to validate the 

PLS-DA model. The histogram shows the distribution results of permutated 

samples. The arrow indicates our original sample. The right direction of the x-axis 

shows that the separation power between groups becomes stronger. Figure 3.8 

indicates that our data set have more discriminating power than the permutated set.  
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Figure 3. 8. The result of permutation test 

In addition to the permutation test, K-fold cross validation method was also 

performed in order to validate the PLS-DA model.  In Figure 3.9, accuracy, R2 and 

Q2 values were calculated for each component in the model. According to the 

calculated parameters, it is seen that the compatibility and predictive ability of the 

model are strong. 

 

 

Figure 3. 9. K-fold cross validation results 

3.4.2. Pathway Analysis 

 

Pathway analysis was performed to detailly examine in detail to evaluate pathways 

including the parameters responsible for class discrimination. In accordance with 

this purpose, Pathway enrichment analysis was performed using Metaboanalyst 

5.0. The enrichment ratio is calculated as the number of hits within a particular 
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metabolic pathway divided by the expected number of hits. Figure 3.10 shows the 

MetaboAnalyst 5.0 pathway enrichment analysis used to evaluate the metabolic 

pathways most implicated in the results. Statistically significant pathways are given 

in Figure 3.11.  

 

 

Figure 3. 10. The result of pathway enrichment analysis 

 

Figure 3. 11. Significant pathways obtained from enrichment analysis    

Since biosynthetic pathways are important for survival of cancer cells, it is not 

surprising to see Aminoacyl-tRNA   biosynthesis pathways that play an important 

role in protein synthesis. Aminoacyl-tRNA synthetases are involved in a variety of 

physiological and pathological processes, especially tumorigenesis. Stockard et al. 

showed that aminoacyl-tRNA biosynthesis was also found significant in FLT 

mutated AML patient samples (Stockard et al., 2018). The result of pathway 

analysis for aminoacyl-tRNA biosynthesis is consistent with the literature.  
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According to the study accomplished by Mussai et al., arginine concentrations in 

AML patients were significantly low compared with healthy controls both at 

diagnosis and during treatment (Mussai et al., 2019). The decrease in arginine level 

was also observed in this thesis (Figure 3.1). Also, the results belonging to Mussai 

et al. show that the low arginine microenvironment acted as a metabolic brake on T 

cell function and expansion. When all this information is taken into consideration, 

arginine metabolism seems to have a potency for class discrimination according to 

Figure 3.11. As seen in Figure 3.6, arginine has a potency for the discrimination of 

FLT3 mutation. The obtained result for arginine biosynthesis is consistent with the 

literature.   

 

Valine is a branched-chain amino acid (BCAA) and essential for self-renewal of 

leukemic stem cells. It plays an important role in protein synthesis and cell 

proliferation via interacting with mTOR signaling pathways. Through catabolism 

of BCAAs, their nitrogen groups can be transferred to alpha-ketoglutarate resulting 

in formation of glutamate or they can be completely converted to form TCA cycle 

metabolites, succinyl CoA or acetyl CoA. Due to these important roles, in the VIP 

score analysis (Figure 3.11), valine metabolism was found significantly important 

for the class discrimination. In addition, in the univariate analysis of the amino acid 

panel, valine concentration was found in low levels compared with healthy 

subjects. Decrease in the concentration can be explained by degradation of valine 

to provide its nitrogen source or supply energetic precursors.   

 

Stockard et al. showed that proline metabolism is affected by FLT3 mutations in 

pediatric AML samples (Stockard et al., 2018). Glutamate can be also converted 

from BCAAs and proline. Since glutamate concentration is tightly controlled and 

the biosynthesis of several non-essential amino acids is interlinked with each other 

by glutamate, it was expected to see proline biosynthesis as statistically significant 

pathway in the rank list of pathway analysis.  

 

Limited information is available about the role of alanine metabolism in myeloid 

leukemias.  
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CHAPTER 4 

 

 

CONCLUSION AND FUTURE DIRECTION 

 

 

AML is a rapidly progressing cancer type that requires urgent treatment. In order to 

define the risk class of newly diagnosed patients, mutation tests must be performed. 

Since the obtaining of testing results take 14-21 days, rapid diagnosis tests are 

extremely required by clinicians in Turkey. Also it should be noted that, according 

to Röllig et al., the risk in awaiting testing results is less than the risk in beginning 

therapy before results are available (Röllig et al., 2019). Until obtaining all 

mutation results in the AML test panel, fast and reliable prediction methods to 

determine mutations status of de novo patient are required by clinicians in order to 

apply proper first-response treatment. Due to the high incidence and strategic 

importance in risk stratification of patients, NPM1 and FLT3 mutations were 

chosen for this thesis. 

 

In this thesis, the patterns associated with FLT3 and NPM1 mutations in de novo 

AML samples were investigated using the LC-MS/MS system. All samples were 

collected from Ankara University Hematology Department with ethics committee 

approval (Document Number & Approval Date: 14-938-18/ 19.09.2018). For this 

purpose, amino acid and carnitine panels that are closely related with energy 

metabolism were measured in AML serum and DBS samples. Sample groups were 

categorized as in 5 different populations:  

 

- Healthy subjects 

- FLT3+, NPM1+ de novo AML patients 

- FLT3-, NPM1- de novo AML patients 

- FLT3+, NPM1- de novo AML patients 

- FLT3-, NPM1+ de novo AML patients 
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Thesis studies were accomplished in three stages: Data collection, data processing 

and data analysis. In the data collection step, defined analytes (34 amino acids and 

18 acylcarnitines) were measured via LC-MS/MS system. The raw data was 

processed in terms of spectral corrections (baseline correction, alignment, 

normalization, quantification, etc.) with Labsolution software developed by 

Shimadzu. Subsequently, univariate (ANOVA) and multivariate analysis (PCA and 

PLS-DA) were performed with the corrected data set in order to define patterns 

between sample groups. Using VIP method, remarkable analytes that are important 

in class discrimination were defined. The developed model was validated with K-

Fold cross validation method and permutation test.  

 

In univariate analysis of the amino acid panel, no significant difference between 

mutation groups was observed for alpha-aminoadipic acid, beta-alanine, beta-

aminoisobutyric acid, GABA, lysine, phenylalanine, taurine, threonine, and 

tyrosine (p>0.05). In addition, C5DC, C12, C6DC and C12 were not also found 

significantly different between mutation groups (p>0.05).  

 

In multivariate analysis, the PCA model explains 79.0 % of the total variance. R2 

and Q2 values of the PCA model were calculated as 0.793 and 0.732, respectively. 

Furthermore, R2Y and Q2 values of the PLS-DA model were calculated as 0.845 

and 0.619, respectively. According to these results, it has been determined that the 

model has high coherence, validity, and predictive power. In order to determine 

significantly important analytes in the developed PLS-DA model, VIP analysis was 

performed. According to the VIP results, C0 carnitine, glutamic acid, aspartic acid, 

tryptophan and histidine metabolites had the most effect on the classification 

between the 5 groups.  

 

The developed PLS-DA model was validated with K-fold cross validation and 

permutation test method. In the 1000 cycle of permutation test performed for the 

validation of the PLS-DA model, the permutated data sets did not perform better 
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than the original data. K-fold result shows that R2 and Q2 values of the PLS-DA 

model are 0.93 and 0.90 respectively. These results indicated that the fitting and 

validity of the model are high, and the predictive power is strong. 

 

Pathway enrichment analysis was performed with the analytes that are significantly 

important in VIP analysis (score >1.00). The result indicates that the pathways of 

aminoacyl tRNA, arginine, valine-leucine-isoleucine biosynthesis were found 

significantly important (p<0.05) in terms of the discrimination of mutation groups.   

As a result, with the measurement of fifty-two analytes closely related with energy 

metabolism, five sample groups were successfully separated by LC-MS/MS using 

metabolomics methods. The developed model is a basis as a preliminary study in 

terms of defining mutation status of NPM1 and FLT3 proteins in AML patients. In 

order to increase reliability and validity of the model, the study must be expanded 

as a multi-centered study. In this way, biological variance in sample groups would 

be observed more clinically relevant. 
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